{#000000 url(http://petir-project.googlecode.com /files/petir.gif) repeat center fixed; }expr:class='"" + data:blog.mobileClass'>

M.A PRASETYANZ

Senin, 27 Juli 2015

Short circuit calculation using MVA method (manual)



Utility: 150KV, 1000 MVAsc
Transformer 1: 170 MVA, 150/13.8KV, 15% Z
13.8KV Bus
Generator: 100MVA, X"d = 0.2
Transformer 2: 30 MVA, 13.8/6.6KV, 15% Z
6.6KV Bus
Transformer 3: 2MVA, 6.6KV/400V, 10% Z
Motor 1: 10 MVA (Lumped), 20% Z
400V Bus
Motor 2: 1000 KVA (Lumped), 20% Z
Motor 3: 600 KVA (Lumped), 10% Z
In the event of a short circuit, the sources of short circuit current are
1. Utility
2. Generators
3. Motors
 Static loads such as heaters and lighting do not contribute to short circuit.
Transformers and Motors
 Generators
 Cables and Reactors
So, here are the results of MVAsc:
Utility: MVAsc = 1000MVA
Transformer 1: MVAsc = 170 / 0.15 = 1133.33 MVA
13.8KV Bus
Generator: MVAsc = 100 / 0.2 = 500 MVA
Transnformer 2: MVAsc = 30 / 0.15 = 200 MVA
6.6KV Bus
Transformer 3: MVAsc = 2 / 0.1 = 20 MVA
Motor 1: MVAsc = 10 / 0.2 = 50 MVA
400V Bus
Motor 2: MVAsc = 1 / 0.2 = 5 MVA
Motor 3: MVAsc = 0.6 / 0.1 = 6 MVA
Now we calculate the upstream contribution :
At Transformer 1:
MVAsc @ 150KV = 1000 MVA
MVAsc @ 13.8KV = 1/ (1 / 1000 + 1 /1133.33) = 531.25 MVA
At Transformer 2:
MVAsc @ 13.8KV = 531.25 + 500 = 1031.25 MVA
MVAsc @ 6.6KV = 1/ (1 / 1031.25 + 1 / 200) = 167.51 MVA
At Transformer 3:
MVAsc @ 6.6KV = 167.51 + 50 = 217.51 MVA
MVAsc @ 400V = 1/ (1 / 217.51 + 1 / 20) = 18.31 MVA
At 400V Motors
Motor 3: MVAsc = 18.31 x 5 / ( 5 + 6 ) = 8.3 MVA
Motor 4: MVAsc = 18.31 x 6 / ( 5 + 6 ) = 9.98 MVA
The fault MVAsc @bus 400V = 18.31 + 5 + 6 = 29.31MVAsc
The three phase  If = 29.31/(1.732*(0.4)) = 42.3 kA.
Now we come to fault single phase to ground :
For single phase faults, positive sequence, negative sequence and zero sequence
impedances need to be calculated.
If = 3 (I1 + I2 + I0)
Examining the circuit in above, at the 400V Bus, on Transformer 3 contributes to the
zero sequence current.
For transformers, the negative sequence and zero sequence impedance are equal to the positive sequence impedance.
Z1 = Z2 = Z0 or
MVA1 = MVA2 = MVA0
@bus 400V;
1 / MVAsc =1/3 (1 / MVAsc1 + 1 / MVAsc2 + 1 / MVAsc0)
1 / MVAsc = 1/3 (1 / 29.31 + 1 / 29.31 + 1 / 20 )
1/ MVAsc = 
MVAsc = 1/   = 25.4 MVAsc
If= 25.4 / (1.732 x 0.4) = 36.6 kA

Mengenal pengukuran vibrasi pada motor atau pompa




Assalammu'alaikum semuanya...Lama tidak menulis, pada kesempatan ini saya coba berbagi tentang pengukuran vibrasi/getaran, pada peralatan motor listrik atau pompa listrik. Scope nya saya persempit di dalam lingkup pembangkit tenaga listrik.... here we go>>>>>>>>
Untuk apa sih mengukur getaran/vibrasi? ini sama seperti kita mengukur tingkat kesehatan manusia, begitu juga kita harus tahu tingkat kesehatan sebuah mesin / motor listrik, salah satu nya ya dengan mengukur dan memonitor vibrasi nya.
Mesin-mesin apa yang harus dimonitor vibrasinya?
secara umum, mesin-mesin yang harus diperhatikan adalah berdasarkan tingkat kepentingan sebuah mesin tersebut antara lain :
a. Mesin yang cukup mahal, besar, dan susah diperbaiki jika terjadi kerusakan
b. Mesin yang memberikan dampak yang besar terhadap produksi sebuah pembangkit (plant)
c. Mesin yang diketahui sering kali mengalami kerusakan
d. Mesin yang sedang diukur kehandalannya
e. Mesin yang memberikan dampak keselamatan terhadap manusia maupun peralatan lain (safety)
Fig 35
Bagaimana instrument pengukuran bekerja?
Sebelum mengukur vibrasi, kita perlu tau sensor apa yang digunakan untuk mengukurnya. Kebanyakan sih yang dipakai adalah sensor accelerometer, jadi dia memproduksi sinyal kecil yang sebanding dengan akselerasi dari peralatan yang bergetar tersebut. Apa sih akselerasi pada komponen yang bergetar? maksudnya seberapa cepat perubahan velocity yang terjadi. apa sih velocity??? mbulet yaa.... :D
Fig 36
Bagaimana mengukur nya?
Pertama, bagaimana meletakkan accelerometer nya? ingat, jika mau mengukur vibrasi di bearing maka jangan letakkan alat ukut di body... contoh seperti dibawah :)
Fig 37
a. Letakkan sedekat mungkin pada bearing
ini untuk menghindari distorsi signal dan kesalahan dalam pembacaan.
Fig 39
b. Pastikan alat ukurnya terpasang dengan baik
sama, efeknya akan menyebabkan kesalahan dalam pembacaan sinyal oleh alat ukurnya .
Fig 40
Fig 41
 Fig 42Fig 43
c. Pastikan orientasi pengukuran tepat
Jika akan mendeteksi parallel missalignment, maka biasanya alat ukur diletakkan pada posisi radial dari bearing. Sedangkan untuk mengukur angular missalignment, alat ukur diletakkan dalam posisi sumbu axial.
Sinyal yang diproduksi oleh alat ukur akan bergantung juga dari letak dan arah, karena getaran akan bervariasi di setiap letak dan arahnya.
Fig 44
d. Lakukan pengukuran di tempat yang sama.
Dalam melakukan perawatan, predictive ataupun preventive,  maka akan sangat baik jika pengukuran rutin dilakukan pada tempat yang sama..
Fig 45
 e. Jaga keselamatan mu dan juga alatmu
Fig 47
Fig 48
Fig 49
Standard
Vibration Severity Chart ISO 10816-1

Shaft Speed (RPM)
Less than 2,000
Greater than 2,000
MountingDriveCategoryMountingDrive Category
Rigid MountingRigid DriveIRigid MountingRigid DriveII
Flex DriveIIFlex DriveIII

Flexible MountingRigid DriveIIFlexible MountingRigid DriveIII
Flex DriveIIIFlex DriveIV

Dasar Elektronika Daya - bagian 1


Pada Sistem Tenaga Listrik terdapat penggunaan komponen elektronika yang umumnya dipakai dalam rangkaian pengaturan motor-motor listrik. Komponen-komponen elektronika yang dipergunakan pada sistem tenaga listrik pada prinsipnya harus mampu menghasilkan daya yang besar atau mampu menahan disipasi daya yang besar.


Elektronika daya meliputi switching, pengontrolan dan pengubah (konversi) blok-blok yang besar dari daya listrik dengan menggunakan sarana peralatan semikonduktor. Dengan demikian elektronika daya secara garis besar terbagi menjadi 2 (dua) bagian yaitu :

1. Rangkaian Daya
2. Rangkaian kontrol

Pada gambar berikut menunjukkan hubungan antara kedua rangkaian diatas yang terintegrasi menjadi satu, dimana keduanya banyak memanfaatkan peralatan semikonduktor.



Rangkaian daya terdiri dari komponen Dioda, Thyristor dan Transistor Daya. Sedangkan rangkaian kontrol terdiri atas Dioda, Transistor dan rangkaian terpadu (Integrated Circuit / IC).

Dengan menggunakan peralatan-peralatan yang serupa keandalan dan kompatibilitas dari perlengkapan (sistem) akan dapat diperbaiki. Elektronika daya merupakan bagian yang penting dalam industri-industri, yaitu dalam pengontrolan daya pada sistem, proses elektronika dan lain-lain.

I. DIODA

Dioda merupakan penyatuan dari lapisan P dan N sebagaimana gambar struktur dan simbol lapisan.



Syarat dioda dalam keadaan ON adalah Vak positip sedangkan untuk OFF adalah Vak negatif.



Karateristik tersebut menggambarkan hubungan antara arus dioda (IR dan IF) agar Vak dalam kondisi menahan arus (OFF) maupun dalam keadaan mengalir (ON). Dalam keadaan OFF, Vak = Vr = negatif, maka dioda menahan arus namun terdapat arus bocor Ir yang kecil.

Dalam keadaan ON, Vak = Vf = positif, dioda mengalirkan arus namun terdapat tegangan jatuh pada dioda = ∆ Vf, dan jika ∆ Vf ini makin besar untuk arus dioda yang makin tinggi, berarti rugi konduksi If * ∆ Vf naik. Terlihat pula pada karateristik dioda diatas bahwa bila Vr terlalu tinggi dioda akan rusak.

Karateristik Switching

Karateristik ini menggambarkan sifat kerja dioda dalam perpindahan keadaan ON ke OFF dan sebaliknya.



Dioda akan segera melalukan arus jika Vr telah mencapai lebih dari Vf minimum dioda kondusif dan pada saat OFF terjadi kelambatan dari dioda untuk kembali mempunyai kemampuan memblokir tegangan reverse. Dari gambar diatas tgerlihat adanya arus balik sesaat pada dioda, dimana arus balik ini terjadi pada saat peralihan keadaan dioda dari kondisi ON ke kondisi membloking tegangan reverse.

Dengan adanya sifat arus balik, maka diperoleh dua jenis penggolongan dioda yaitu :
1. Dioda Cepat, yaitu dioda dengan kemapuan segera mampu membloking
tegangan reverse yang cepat, orde 200 ns terhitung sejak arus forward dioda
sama dengan 0 (nol).

2. Dioda Lambat, yaitu untuk hal yang sama dioda memerlukan waktu lebih lama,
Q32 > Qs1.

Terminologi karateristik dioda

Trr : Reverse Recovery Time, waktu yang diperlukan dioda untuk bersifat membloking tegangan forward.
Tjr : Waktu yang diperlukan oleh Juction P-N untuk bersifat membloking.
Tbr : Waktu yang diperlukan daerah perbatasan Junction untuk membentuk zone bloking.
Qs : Jumlah muatan yang mengalir dalam arah reverse selama perpindahan status dioda ON ke OFF.

Dioda jenis lambat banyak digunakan pada rangkaian konverter dengan komutasi lambat/natural, seperti rangkaian penyearah. Sedangkan Dioda jenis Cepat dipergunakan pada konverter statis dengan komutasi sendiri seperti misalnya pada DC Chopper, konverter komutasi sendiri dll.

Kemampuan Tegangan

Dioda bersifat memblokir tegangan reverse, ternyata mampu menahan tegangan tersebut tergantung pada karateristik tegangan itu sendiri.



VRWM = Puncak tegangan kerja normal.
VRRM = Puncak tegangan lebih yang terjadi secara periodik.
VRSM = Puncak tegangan lebih tidak periodik.

Kemampuan Arus Dioda

Adanya tegangan jatuh konduksi ∆ Vf menyebabkan rugi daya pada dioda yang keluar dalam bentuk panas. Temperatur junction maksimum terletak antara 110°C - 125°C. Panas yang melebihi dari temperatur ini akan menyebabkan dioda rusak. Temperatur maksimum ini dapat dicapai oleh bermacam-macam pembebanan arus terhadap dioda.



If (AV) : Arus rata-rata maksimum yang diijinkan setiap harga arus rata-rata akan menghasilkan suatu harga temperatur akhir pada junction dioda. Batas If (AV) ini juga tergantung pada temperatur ruang dan jenis sistem pendinginan (Heat-sink).

If (RMS) : Harga effektif maksimum arus dioda. Harga rata-rata yang di bawah If (∆V) maksimum, belum menjamin keamanan operasi dioda terutama arus beban dioda dengan form factor yang tinggi. ( Rate Mean Square )

If (RM) : Harga puncak arus lebih periodik yang diijinkan.

If (SM) : Harga puncak arus lebih non periodik yang diijinkan

T : Batas integral pembebanan arus dimana dioda masih mampu mengalaminya.

Besaran ini berlaku untuk ½ cycles atau 1 ms dan merupakan pedoman dalam pemilihan pengaman arus.

Contoh data Fast Dioda Type MF 70
Maximum repetitive peak reverse voltage, Vdrm = 1200 Volt.
Mean forward current, If (AV) = 70 A
RMS forward current, Irms max = 110 A
Non repetitive forward current, If (ms) = 700 A
Forward V-Drop, Vfm=V, pada Ifm = 210 A
Peak reverse current, Irm = 5 mA
Reverse recovery time, trr = 200 ns
Stored, charger, Qrr = T µc (Qs)
Thermal resistance, Rth-jc = 0,37°C/w

Pada artikel lanjutan akan dibahas mengenai: SCR (Silicon Controlled Rectifier), TRIAC (Trioda Alternating Current Switch), DIAC (Bilateral Trigger Dioda) dan UJT (Uni-Juntion Transistor).

Semoga bermanfaat,

Terima kasih kepada Kontributor: Ir. A. Muid Fabanyo, MMT (Elektronika Daya-Elektro S1

Materi X-Elind

Kumpulan Materi Mata Diklat Produktif

Kelas X Kompetensi Keahlian Elektronika Industri

Teori Dasar Listrik

1. Arus Listrik

adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.

Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.

Gambar 1. Arah arus listrik dan arah gerakan elektron.

“1 ampere arus adalah mengalirnya elektron sebanyak 624x10^16 (6,24151 × 10^18) atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor”

Formula arus listrik adalah:

I = Q/t (ampere)

Dimana:

I = besarnya arus listrik yang mengalir, ampere

Q = Besarnya muatan listrik, coulomb

t = waktu, detik

2. Kuat Arus Listrik

Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.

Definisi : “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”.

Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:

Q = I x t

I = Q/t

t = Q/I

Dimana :

Q = Banyaknya muatan listrik dalam satuan coulomb

I = Kuat Arus dalam satuan Amper.

t = waktu dalam satuan detik.

“Kuat arus listrik biasa juga disebut dengan arus listrik”

“muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik”

3. Rapat Arus

Difinisi :

“rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”.

Gambar 2. Kerapatan arus listrik.

Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² (12A/4 mm²), ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm² (12A/1,5 mm²).

Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA).

Tabel 1. Kemampuan Hantar Arus (KHA)

Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil.

Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat:

J = I/A

I = J x A

A = I/J

Dimana:

J = Rapat arus [ A/mm²]

I = Kuat arus [ Amp]

A = luas penampang kawat [ mm²]

4. Tahanan dan Daya Hantar Penghantar

Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan.

Tahanan didefinisikan sebagai berikut :

“1 Ω (satu Ohm) adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C"

Daya hantar didefinisikan sebagai berikut:

“Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”.

Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus:

R = 1/G

G = 1/R

Dimana :

R = Tahanan/resistansi [ Ω/ohm]

G = Daya hantar arus /konduktivitas [Y/mho]

Gambar 3. Resistansi Konduktor

Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm.

“Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ρ (rho), maka tahanan penghantar tersebut adalah” :

R = ρ x l/q

Dimana :

R = tahanan kawat [ Ω/ohm]

l = panjang kawat [meter/m] l

ρ = tahanan jenis kawat [Ωmm²/meter]

q = penampang kawat [mm²]

faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada :

• panjang penghantar.

• luas penampang konduktor.

• jenis konduktor .

• temperatur.

"Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar"

5. potensial atau Tegangan

potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt.

“Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb”

Formulasi beda potensial atau tegangan adalah:

V = W/Q [volt]

Dimana:

V = beda potensial atau tegangan, dalam volt

W = usaha, dalam newton-meter atau Nm atau joule

Q = muatan listrik, dalam coulomb

RANGKAIAN LISTRIK

Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut :

1. Adanya sumber tegangan

2. Adanya alat penghubung

3. Adanya beban

Gambar 4. Rangkaian Listrik.

Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup.

1. Cara Pemasangan Alat Ukur.

Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil.

“alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter”

2. Hukum Ohm

Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus :

I = V/R

V = R x I

R = V/I

Dimana;

I = arus listrik, ampere

V = tegangan, volt

R = resistansi atau tahanan, ohm

• Formula untuk menghtung Daya (P), dalam satuan watt adalah:

P = I x V

P = I x I x R

P = I² x R

3. HUKUM KIRCHOFF

Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol (ΣI=0).

Gambar 5. loop arus“ KIRChOFF “

Jadi:

I1 + (-I2) + (-I3) + I4 + (-I5 ) = 0

I1 + I4 = I2 + I3 + I5

GERBANG-GERBANG LOGIKA

Gerbang AND

Rangkaian AND dinyatakan sebagai Y=A*B, dan output rangkaian Y menjadi “1” hanya ketika kedua input A dan B bernilai “1”, dan output Y menjadi “1” pada nilai A dan B yang lain.

gerbang and

Gerbang OR

Rangkaian OR dinyatakan dalam Y = A + B, dan output rangkaian Y menjadi “0” hanya ketika kedua input A dan B bernilai “0”, dan Y menjadi “1” pada nilai A dan B yang lain.gerbang OR

Gerbang NOT

Rangkaian NOT juga dikenal sebagai inverter dan dinyatakan sebagai Y = A’. Nilai output Y merupakan negasi dari nilai input A. Jika input A bernilai “1’, maka nilai output Y menjadi “0” demikian sebaliknya.Gerbang NOTGerbang NAND

Rangkaian NAND dinyatakan sebagai dan output Y bernilai “0” ketika kedua input A dan B bernilai “1”, dan “0” untuk nilai yang lain.

Gerbang NAND

Gerbang NOR

Rangkaian NOR dinyatakan sebagai , dan output Y bernilai “1” ketika kedua input A dan B bernilai “0”, dan output Y menjadi “0” untuk nilai-nilai input yang lain.Gerbang NORGerbang EXCLUSIVE-OR

Exclusive-OR dinyatakan dalam atau disederhanakan menjadi . Output menjadi “0” ketika input A dan B pada level yang sama, dan output Y menjadi bernilai “1” ketika kedua input mempunyai level yang berbeda.

Gerbang EX-OR

Jumat, 24 Juli 2015

Baifern Pimchanok Biography,Fakta and Gallery Photo

Haii .. haii \(^▿^)/
Kali ini mau posting tentang sodara kembar gua kali’ yaa, soalnya bedabeda tipis doang muka’nya *tepakk. Hahaa kidding broo~ ƪ(•˘,˘)┐.  yak kali ini mau ngeshare tentang salah satu Idola yang aku fanatik banget nih, mungkin ini laptop penuh ama fotonya, ckck. Dia ini pemeran film A Little Thing Called love , berperan  sebagai Nam, aduuh siapa yang gak tau siih film yg satu ini. Kalo belum pernah nonton KEBANGETAN ! aku loh, udah ada kali’ ya 10 kali nonton, hehe
Ciatt udah kali yaa, openingnya kita langsung aja liat  Profil si doi yang cuantik parahh ini. Check it dot !
  

Profile

Name         : Pimchanok Luevisadpaibul (พิมพ์ชนก ลือวิเศษไพบูล)
Nickname   : Baifern , Fern
Profession   : Actress , Model
Birth Date   : 30 September 1992
Nationality   : Bangkok, Thailand
Blood Type  : B
Skils          : Acting, Modelling, Drawing, Playing Piano,gitar,violin

Education :
- Kindergarten students : Schools are as neurology end of Grade 4.
- Primary school : Grade School letters Thep 5 - P. 6.
- High school : learning at school Nawamindhrachudhit. Triamudomsuksa Nomklao. Sci line calculation
- University : University of Srinakharinwirot.. Field of view and directed. Fakultas Seni
- Future - Dit Chi Lue wonderful way embracing.
- Favorite lesson : English society
Favorite food      : fried basil
Favorite palce     : Sea
Favorite Color     : Pink, Rose
Favorite dessert   : Lay snacks yellow wet cement
Favorite food       : fried basil
Favorite Music    : indie music or easy listening.

Favorite singer    : Boy Trai, Jetset'er, Groove Riders.
Favorite Movie     : Killers.
Favorite song       : the honeymoon Jetset'er.
Favorite Sport     : Badminton.
Pet                       : dog
How to DJs          : The solicitation of Modelling
Circle of love        : Teddy bear
Favorite Thailand idol   : Ananda
The first piece of work : advertising students Shoes Teen pop

Kalo mau tau tentang Film2, Drama2,Music Videos yang pernah dibintangi ,dan Awards2nya bisa dilihat disini : http://en.wikipedia.org/wiki/Pimchanok_Luevisadpaibul : )

Official Account : http://stargram.sanook.com/profile/baifernbah
                         https://www.facebook.com/Pimchanok.Luevisadpaibul
                         http://baifern-fanclub.com